15 research outputs found

    Estudio del patrón de penetración del cemento óseo en la artroplastia de rodilla sobre modelo sintético

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, leída el 13-05-2010Depto. de CirugíaFac. de MedicinaTRUEpu

    Desktop 3D Printing: Key for Surgical Navigation in Acral Tumors?

    Get PDF
    Surgical navigation techniques have shown potential benefits in orthopedic oncologic surgery. However, the translation of these results to acral tumor resection surgeries is challenging due to the large number of joints with complex movements of the affected areas (located in distal extremities). This study proposes a surgical workflow that combines an intraoperative open-source navigation software, based on a multi-camera tracking, with desktop three-dimensional (3D) printing for accurate navigation of these tumors. Desktop 3D printing was used to fabricate patient-specific 3D printed molds to ensure that the distal extremity is in the same position both in preoperative images and during image-guided surgery (IGS). The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). The validation involved deformation analysis of the 3D-printed mold after sterilization, accuracy of the system in patient-specific 3D-printed phantoms, and feasibility of the workflow during the surgical intervention. The sterilization process did not lead to significant deformations of the mold (mean error below 0.20 mm). The overall accuracy of the system was 1.88 mm evaluated on the phantoms. IGS guidance was feasible during both surgeries, allowing surgeons to verify enough margin during tumor resection. The results obtained have demonstrated the viability of combining open-source navigation and desktop 3D printing for acral tumor surgeries. The suggested framework can be easily personalized to any patient and could be adapted to other surgical scenarios.This work was supported by projects TEC2013-48251-C2-1-R (Ministerio de Economía y Competitividad); PI18/01625 and PI15/02121 (Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III and European Regional Development Fund “Una manera de hacer Europa”) and IND2018/TIC-9753 (Comunidad de Madrid).Publicad

    Combining Surgical Navigation and 3D Printing for Less Invasive Pelvic Tumor Resections

    Get PDF
    Surgical interventions for musculoskeletal tumor resection are particularly challenging in the pelvic region due to their anatomical complexity and proximity to vital structures. Several techniques, such as surgical navigation or patient-specific instruments (PSIs), have been introduced to ensure accurate resection margins. However, their inclusion usually modifies the surgical approach making it more invasive. In this study, we propose to combine both techniques to reduce this invasiveness while improving the precision of the intervention. PSIs are used for image-to-patient registration and the installation of the navigation’s reference frame. We tested and validated the proposed setup in a realistic surgical scenario with six cadavers (12 hemipelvis). The data collected during the experiment allowed us to study different resection scenarios, identifying the patient-specific instrument configurations that optimize navigation accuracy. The mean values obtained for maximum osteotomy deviation or MOD (maximum distance between the planned and actual osteotomy for each simulated scenario) were as follows: for ilium resections, 5.9 mm in the iliac crest and 1.65 mm in the supra-acetabular region, and for acetabulum resections, 3.44 mm, 1.88 mm, and 1.97 mm in the supra-acetabular, ischial and pubic regions, respectively. Additionally, those cases with image-to-patient registration error below 2 mm ensured MODs of 2 mm or lower. Our results show how combining several PSIs leads to low navigation errors and high precision while providing a less invasive surgical approach.This work was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, and European Regional Development Fund ‘‘Una manera de hacer Europa,’’ under Project PI18/01625.Publicad

    Combining Augmented Reality and 3D Printing to Improve Surgical Workflows in Orthopedic Oncology: Smartphone Application and Clinical Evaluation

    Get PDF
    During the last decade, orthopedic oncology has experienced the benefits of computerized medical imaging to reduce human dependency, improving accuracy and clinical outcomes. However, traditional surgical navigation systems do not always adapt properly to this kind of interventions. Augmented reality (AR) and three-dimensional (3D) printing are technologies lately introduced in the surgical environment with promising results. Here we present an innovative solution combining 3D printing and AR in orthopedic oncological surgery. A new surgical workflow is proposed, including 3D printed models and a novel AR-based smartphone application (app). This app can display the patient’s anatomy and the tumor’s location. A 3D-printed reference marker, designed to fit in a unique position of the affected bone tissue, enables automatic registration. The system has been evaluated in terms of visualization accuracy and usability during the whole surgical workflow. Experiments on six realistic phantoms provided a visualization error below 3 mm. The AR system was tested in two clinical cases during surgical planning, patient communication, and surgical intervention. These results and the positive feedback obtained from surgeons and patients suggest that the combination of AR and 3D printing can improve efficacy, accuracy, and patients’ experience.This work was supported by projects PI18/01625 (Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III and European Regional Development Fund “Una manera de hacer Europa”) and IND2018/TIC-9753 (Comunidad de Madrid)

    Augmented reality as a tool to guide psi placement in pelvic tumor resections

    Get PDF
    Patient-specific instruments (PSIs) have become a valuable tool for osteotomy guidance in complex surgical scenarios such as pelvic tumor resection. They provide similar accuracy to surgical navigation systems but are generally more convenient and faster. However, their correct placement can become challenging in some anatomical regions, and it cannot be verified objectively during the intervention. Incorrect installations can result in high deviations from the planned osteotomy, increasing the risk of positive resection margins. In this work, we propose to use augmented reality (AR) to guide and verify PSIs placement. We designed an experiment to assess the accuracy provided by the system using a smartphone and the HoloLens 2 and compared the results with the conventional freehand method. The results showed significant differences, where AR guidance prevented high osteotomy deviations, reducing maximal deviation of 54.03 mm for freehand placements to less than 5 mm with AR guidance. The experiment was performed in two versions of a plastic threedimensional (3D) printed phantom, one including a silicone layer to simulate tissue, providing more realism. We also studied how differences in shape and location of PSIs affect their accuracy, concluding that those with smaller sizes and a homogeneous target surface are more prone to errors. Our study presents promising results that prove AR’s potential to overcome the present limitations of PSIs conveniently and effectively.This research was funded by project PI18/01625 (Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III and European Regional Development Fund “Una manera de hacer Europa”)

    HoloLens 1 vs. HoloLens 2: Improvements in the New Model for Orthopedic Oncological Interventions

    Get PDF
    This work analyzed the use of Microsoft HoloLens 2 in orthopedic oncological surgeries and compares it to its predecessor (Microsoft HoloLens 1). Specifically, we developed two equivalent applications, one for each device, and evaluated the augmented reality (AR) projection accuracy in an experimental scenario using phantoms based on two patients. We achieved automatic registration between virtual and real worlds using patient-specific surgical guides on each phantom. They contained a small adaptor for a 3D-printed AR marker, the characteristic patterns of which were easily recognized using both Microsoft HoloLens devices. The newest model improved the AR projection accuracy by almost 25%, and both of them yielded an RMSE below 3 mm. After ascertaining the enhancement of the second model in this aspect, we went a step further with Microsoft HoloLens 2 and tested it during the surgical intervention of one of the patients. During this experience, we collected the surgeons’ feedback in terms of comfortability, usability, and ergonomics. Our goal was to estimate whether the improved technical features of the newest model facilitate its implementation in actual surgical scenarios. All of the results point to Microsoft HoloLens 2 being better in all the aspects affecting surgical interventions and support its use in future experiences.This work was supported by projects PI18/01625, AC20/00102-3 and Era Permed PerPlanRT (Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, Asociación Española Contra el Cáncer and European Regional Development Fund "Una manera de hacer Europa") and IND2018/TIC-9753 (Comunidad de Madrid)

    Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates

    Get PDF
    Craniosynostosis must often be corrected using surgery, by which the affected bone tissue is remodeled. Nowadays, surgical reconstruction relies mostly on the subjective judgement of the surgeon to best restore normal skull shape, since remodeled bone is manually placed and fixed. Slight variations can compromise the cosmetic outcome. The objective of this study was to describe and evaluate a novel workflow for patient-specific correction of craniosynostosis based on intraoperative navigation and 3D printing. The workflow was followed in five patients with craniosynostosis. Virtual surgical planning was performed, and patient-specific cutting guides and templates were designed and manufactured. These guides and templates were used to control osteotomies and bone remodeling. An intraoperative navigation system based on optical tracking made it possible to follow preoperative virtual planning in the operating room through real-time positioning and 3D visualization. Navigation accuracy was estimated using intraoperative surface scanning as the gold-standard. An average error of 0.62 mm and 0.64 mm was obtained in the remodeled frontal region and supraorbital bar, respectively. Intraoperative navigation is an accurate and reproducible technique for correction of craniosynostosis that enables optimal translation of the preoperative plan to the operating room. © 2019, The Author(s).This work has been supported by Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, project “PI18/01625”, co-funded by European Regional Development Fund (ERDF), “A way of making Europe”

    Point-of-care manufacturing: a single university hospital's initial experience

    Get PDF
    The integration of 3D printing technology in hospitals is evolving toward production models such as point-of-care manufacturing. This study aims to present the results of the integration of 3D printing technology in a manufacturing university hospital.Analysis and interpretation of the data supported by Project PI18/01625 (Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III) and European Regional Development Fund (“Una manera de hacer Europa”)

    Combining Augmented Reality and 3D Printing to Display Patient Models on a Smartphone.

    Get PDF
    This report was supported by projects PI18/01625 and PI15/02121 (Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III and European Regional Development Fund "Una manera de hacer Europa") and IND2018/TIC-9753 (Comunidad de Madrid)
    corecore